Olasılık teorisinde, doğum günü problemi veya doğum günü paradoksu, n adet rastgele seçilmiş kişiden oluşan bir grup içindeki bazı çiftlerin doğum gününün aynı olma olasılığını inceler. Güvercin yuvası prensibine göre, kişi sayısı 367’ye ulaştığında (29 Şubat dahil, 366 adet olası doğum günü olduğu için) olasılık %100’e ulaşır fakat, %99,9 olasılığa sadece 70 kişi ile ve %50 olasılığa 23 kişi ile ulaşılır. Bu sonuçlar, yılın her gününün (29 Şubat hariç) eşit derecede olası bir doğum günü olduğu varsayımına dayanır.
Mevcut doğum kayıtları farklı günlerde farklı sayıda insanın doğduğunu gösterir. Bu durumda, %50 eşiğine ulaşmak için gereken insan sayısının 23 veya daha az olduğu söylenebilir. Örneğin, insanların yarısı bir günde ve diğer yarısı başka bir günde doğmuş olsaydı, bu durumda herhangi iki kişinin doğum gününü paylaşma şansı %50 olurdu.
Gruptaki en az iki kişinin aynı doğum gününe sahip olma olasılığının %50’ye ulaşılması için sadece 23 kişilik bir grubun gerektiği şaşırtıcı görünebilir: bu sonuç, bir bireye sabitlenmenin ve onun doğum gününü diğerleriyle karşılaştırmanın aksine doğum günü karşılaştırmasının aslında, olası her bir çift arasında = 23 x 22/2 = 253 karşılaştırma -bir yıl içindeki gün sayısının yarısından (en fazla 183) daha çok- yapılmasıyla daha makul olabilir. Doğum günü problemi kendisiyle mantıksal çelişkili olma anlamda bir “paradoks” değildir, ancak ilk bakışta anlaşılamaz.
Doğum günü probleminin gerçek hayattaki uygulamaları arasında doğum günü saldırısı isimli bir kriptografik saldırı vardır; bu saldırı bu olasılık modelini kullanarak bir özet fonksiyonu için çarpışma bulma karmaşıklığını azaltır ve büyüklüğü belirli bir popülasyonun özetleri arasında bulunan bir özet çarpışmasının yaklaşık riskini hesaplar.
Problemin tarihi bilinmemektedir. W. W. Rouse Ball, bunun ilk olarak Harold Davenport tarafından ele alındığını belirtmiştir (alıntı yok). Ancak, Richard von Mises, bugün doğum günü problemi olarak bilinen şeyin daha eski bir versiyonunu sunmuştur.