Matematik Tarihi

Kısaca: Matematik, bir yönüyle resim ve müzik gibi bir sanat, bir yönüyle bir dil ve başka bir yönüyle de tabiatı anlamaya yönelik yöntemler manzumesidir. Matematiğin yazılı belgelere dayalı 4500 yıllık bir tarihi vardır. Bu zaman dilimi içinde, matematiğin gelişimi 5 döneme ayrılır. ...devamı ☟

Matematik tarihi
Matematik Tarihi

Matematik, bir yönüyle resim ve müzik gibi bir sanat, bir yönüyle bir dil ve başka bir yönüyle de tabiatı anlamaya yönelik yöntemler manzumesidir. Matematiğin yazılı belgelere dayalı 4500 yıllık bir tarihi vardır. Bu zaman dilimi içinde, matematiğin gelişimi 5 döneme ayrılır.

Birinci dönem, başlangıçtan M.Ö. 6. yüzyıla kadar, Mısır ve Mezopotamya'da yapılan matematiği kapsar. Mısır'da bilinen matematik, tam ve kesirli sayıların 4 işlemi, bazı geometrik şekillerin alan ve hacim hesaplarıdır. Bugün okullarımızda öğretilen matematiğin ortaokul 2. sınıfa kadarki kısmı olarak değerlendirebiliriz. Aynı dönemde Mezopotamya'da matematik biraz daha ileridir; onların bildikleri matematiğin düzeyi de lise 2. sınıf matematiği düzeyidir.

Matematik, bir yönüyle resim ve müzik gibi bir sanat, bir yönüyle bir dil ve başka bir yönüyle de tabiatı anlamaya yönelik yöntemler manzumesidir. Matematiğin yazılı belgelere dayalı 4500 yıllık bir tarihi vardır. Bu zaman dilimi içinde, matematiğin gelişimi 5 döneme ayrılır. Birinci dönem, başlangıçtan M.Ö. 6. yüzyıla kadar, Mısır ve Mezopotamya'da yapılan matematiği kapsar. Mısır'da bilinen matematik, tam ve kesirli sayıların 4 işlemi, bazı geometrik şekillerin alan ve hacim hesaplarıdır. Bugün okullarımızda öğretilen matematiğin ortaokul 2. sınıfa kadarki kısmı olarak değerlendirebiliriz. Aynı dönemde Mezopotamya'da matematik biraz daha ileridir; onların bildikleri matematiğin düzeyi de lise 2. sınıf matematiği düzeyidir. Matematik, günlük hayatın ihtiyaçlarına (takvim belirlemek, muhasebe ve mimari hesaplar gibi) yönelik, henüz sanat düzeyine ulaşmamış, zanaat düzeyinde bir uğraşıdır. Formel ifadeler, formüller ve akıl yürütmeye dayalı ispatlar yoktur. Bulgular ampirik ve işlemler sayısaldır. İkinci dönem, M. Ö. 6. yy'dan M. S. 6. yy'a kadar uzanan Yunan matematiği dönemidir. Matematiğin nitelik değiştirdiği, zanaat düzeyinden sanat düzeyine geçtiği dönemdir. Yunan matematiğinin başlangıcında Mısır ve Mezopotamya varsa da Yunan döneminde, matematiğin günümüze kadar yönü belirlenmiş, bir sıçrama yapılmıştır. Matematiğe en önemli katkılar Platon'un akademisinde ve iskenderiye'deki Museum'da yetişen bilim adamlanndan gelmiştir. Yunan matematiği esasta 'sanat için sanat' anlayışıyla yapılan ve günümüz manasında modern bir matematiktir. Üçüncü dönem, M.S. 6. yy'dan 17. yy'ın sonlanna kadar olan dönemdir. Bu dönemde, matematiğin yaşadığı dünya islam dünyası ve Hindistan'dır. Müslümanların matematiğe katkısı büyük bir tartışma konusudur. Kimilerine göre, Müslümanların matematiğe, Yunan matematiğini yaşatmak ve Batı'ya transfer etmekten öte, bir katkıları olmamıştır. Kimilerine göre ise, Müslümanların matematiğe özgün kalkılan olmuştur. (Bu katkılar Avrupalı matematikçiler tarafından tekrar bulunmuş ya da göz ardı edilmiştir.)

Müslümanların matematiğe katkısı yeterince araştırılmamıştır. Son yıllarda yapılan araştırmalar, matematiğin en önemli buluşu olan türevin, Avrupalılardan 500 yıl önce Azerbaycanlı Şerafettin Al-Tusi tarafından bulunmuş olduğunu ortaya çıkarmıştır. Tarihi olaylar- Haçlı seferleri, Moğol istilası ve dahili olaylar-, islam dünyasının nakli bilimlere geçmesine ve sonuç olarak bilimin yerini safsatanın almasına neden olmuştur. 16. yy' da matematikte tek söz sahibi Avrupalılardır. Dördüncü dönem, 1700-1900 yıllan arasını kapsar ve 'Klasik Matematik Dönemi' olarak bilinir. Matematiğin 'Altın Çağları' olarak da anılır. Büyük hipotez ve teorilerin ortaya çıktığı, matematiğin kullanım alanının bütün bilim dallarını kapsayacak şekilde genişlediği bir dönemdir. Matematik, bütün pozitif bilimlerin temelim oluşturacak bir konuma gelmiştir. Bugün üniversitelerde okutulan matematiğin büyük bir kısmı bu dönemin ürünüdür. Beşinci dönem, 1900'lü yılların başından günümüze uzanan, 'Modern Matematik Dönemi' olarak adlandırılan dönemdir. Modern matematik, klasik matematiğin anayasal bir tabana oturtulmuş şeklidir. 1900'lü yılların başına gelindiğinde, matematik büyük bir kompleksiteye ulaşmıştı. Böylesi karmaşık bir sistemde alışılageldiği şekilde matematik yapmak, 'bir ispat niçin geçerlidir; ispatın da ispatı gerekli midir?' gibi matematiğin temellerini sorgulayan sorunları ortaya çıkarmıştır. Matematik deneysel bir bilim olmadığı için, nihai yargıyı deneye bırakmak olanağı yoktur. Bu sorunların, 'meşru' bir zeminde çözüme ulaştırılacağını anlayan matematikçiler, matematiği tutarlı yasalara dayalı bir temele oturtma çabasına giriştiler. Modern matematik bu uğraşının ürünüdür. Modern matematiğin en önemli özellikleri, önceki dönemlere kıyasla, çok daha soyut, göreceli ve kuramsal oluşudur. Matematik çok hızlı gelişen, çok yüksek bir teknik düzeye erişmiş, elde edilen bilgilerin üst üste yığıldığı, bir bilginin diğeri tarafından kullanımdan kaldırılmadığı, bu nedenle de gittikçe zorlaşan ama bir o kadar da çekici, ancak tutku ile yapılabilen bir bilimdir.

Matematiğin Kısa Bir Tarihi Prof. Dr. Ali Ülger

Yukarıda; birinci grup olarak belirttiğimiz; Eski Yunan (Antik çağ, Grek) matematikçileri; M.Ö. 8. yüzyıl ile M.S. 2. yüzyıl arasında, ikinci grup olarak belirttiğimiz Batı Dünyası matematikçileri ise, 16. ile 20. yüzyıl arasında yaşamışlardır: Burada akla şöyle bir soru gelmektedir. 16. yüzyıldan önceki zaman içerisinde matematik konularında hiç bir araştırma ve çalışma olmamış mıdır? Özellikle, islamiyetin ilk yılları olan 7. yüzyıl ile 16. yüzyıl arasında yaşamış olan Türk-İslam Dünyası matematik bilginlerinin varlığı ve çalışmaları görmezlikten gelinmiştir.Ortaçağ Avrupasında ne ve niçin soruları sorulamazdı,din adamları bilimle uğraşan insanları çeşitli şekillerde cezalandırırlardı.Bu nedenle ortaçağda bilim avrupada gelişmemiştir.Bilim daha çok islam dünyasında gelişmiştir.Coğrafi keşifler başladığı vakit avrupalı halkın papaya inancı kalmamıştır. Çünki papa dünyanın düz bir tepsi olduğunu savunuyordu.coğrafi keşifler başladığında ise bunun yalan olduğu ortaya çıktı.Halk okullar açmaya başladı,bilim avrupada gelişmeye başladı.

Gerçek olan şu ki; Türk-İslam Dünyası matematikçileri, yukarıda birinci grup olarak adlarını belirttiğimiz Eski Yunan bilginlerinin ortaya koyup, yeterli çözüm getiremedikleri, matematik sorunlarına yeni çözümler getirdikleri gibi, bu bilime yeni sistem, kavram ve teorem kazandırmışlardır. Bu başarılarının sonucu bugünkü ileri matematiğin temelini atmışlardır. Her ne kadar, Batı'lı bazı bilim tarihçileri, Eski Yunan matematiğini geliştirmiş olmakla vasıflandırıyorlarsa da, son yüzyıl içinde yapılan araştırmalar, bu hükmün temelinden yanlış olduğunu ortaya koymuşlardır.

Ülkemizde, evrensel nitelikteki kendi alimlerimizin bilimsel yönlerine gereken ve yeterli önem verilmezken; Batı'da, özellikle son yüzyıl içerisinde, bilginlerimize ait yüzlerce cilt eser ve makalelerin yayınlandığı, hatta bu bilginlerimiz için, yaşadığı yüzyıllara adlar verildiği ve anma törenleri düzenlendiğini görmek mümkündür. Bunlardan birkaç örnek vermek gerekirse; dünyada ilk cebir kitabı yazanın Harezmi (Harezm 780-Bağdat 850), trigonometrinin temel bilginlerinden olan sinüs ve cosinüs tanımlarını ilk açıklayan el-Battani (Harran 858-Samarra 929), tanjant ve cotanjant tanımları ile ilgili temel bilgileri Ebu'l Vefa (Buzcan 940-Bağdat 998), Blaise Pascal'a (1623-1662) izafe edilen ve cebirde önemli kuralları ihtiva eden "Binom Formülünün" Ömer Hayyam'a (1038-Nişabur 1132) ait ve Johannes Kepler'in (1570-1630) araştırmalarına rehberlik edenin İbn-i Heysem (Basra 965-Kahire 1039). olduğunu belirtebiliriz. Ayrıca Sabit bin Kurra (Harran-826-Bağdat 901) için "Türk Öklid'i" bilim dünyasının en büyük alimi, Beyruni (Bruni) (Ket 973-Gazne 1052) için "Onuncu Yüzyıl Bilgini", ünlü Türk hükümdarı Uluğ Bey için "On Beşinci Yüzyıl Bilgini" öğrencisi Ali Kuşçu için "On Beşinci Yüzyıl Batlamyos'u" dendiğini de belirtmek mümkündür.

Yukarıda sadece birkaçının adını belirttiğimiz 8. ile 16. yüzyıl Türk-İslam Dünyası alimlerinin eserleri, Batı'da "Tercüme Yüzyılı" olarak adlandırılan 12. yüzyıl başlarından itibaren, önceleri zamanın bilim dili olan Latince'ye, daha sonradan da, öteki Batı dillerine çevrilmiştir. Çevrilen bu eserlerin asılları ise, Doğu Yazma Eserleri ile zengin olan Avrupa kütüphanelerinde muhafaza edilmekte ve hala, ilgili bilim adamlarının elinde, gerektiğinde temel müracaat kitabı, ya da kaynak eser olarak değerlendirilmektedir.

Bazı kaynaklar, matematiğin kurucusu ve geliştiricisi olarak, Batı dünyası matematikçilerinin adlarını belirtir. Gerçekte; Avrupa, 8. ile 16. yüzyıl Türk-İslam Dünyası matematikçilerinin hazırlamış oldukları temel eserlerden büyük istifadeler sağlayarak, matematiği, bugünkü ileri seviyesine ulaştırabilmişlerdir. Öyle ki; Türk-İslam Dünyası matematikçileri, Batı dünyasının ilmi düşünce ve araştırma duygularını ateşleyerek harekete geçirip beslediler ve yeni bir canlılık kazandırdılar. Cebir, geometri, aritmetik ve trigonometri konularında Batı'yı kendi görüş ve keşiflerine dayanarak ilerleyebileceği seviyeye getirdiler.

16. yüzyıl sonları için İtalyan matematikçi Cordano'nun (1501-1576) adını belirtebiliriz.

17. yüzyılda; İngiliz (İskoçyalı) Jean Napier (1550-1617), İsviçre matematikçilerinden Gulden (1577-1643); İtalyan matematikçilerinden Cavalieri (1598-1647); Fransız matematikçilerinden René Descartes (1596-1650), Desargues (1593-1662), Blaise Pascal (1623-1662), Pierre Fermat (1601-1663); Hollandalı matematikçi Huygens'in (1629-1695) adlarını belirtebiliriz.

Bu kişilerden Jean Napier logaritmaya ait sistemleri ortaya koymuştur. Descartes de analitik geometriye ait yeni bazı temel esasları ortaya koymuş, mevcut analitik geometri bilgilerini sistemleştirmiştir. Diğer matematikçiler de, matematiğin çeşitli dallarına ait, bazı yeni temel bilgiler kazandırmışlardır.

18. yüzyılda; İsviçre matematikçilerinden; Jacques Bernouilli I (1654-1705), Cramer (1704-1752), Leonhard Euler (1707-1783), Alman matematikçilerinden Gottfried Wilhelm Leibniz (1146-1716), İngiliz matematikçilerinden Isaac Newton (1642-1727), Mac Loren (1698-1746), İtalyan Matematikçilerinden Ceva (1648-1734), Riccati (1676-1754), Fransız matematikçilerinden Clairaut'in (1713-1765) adlarını belirtebiliriz.

19. yüzyıl Fransız matematikçilerinden; Joseph Louis Lagrange (1736-1813), Gasport Monge (1746-1818), Pierre Simon De Laplace (1749-1827), Joseph Fourier (1768-1830), Evariste Galois (1811-1832), Legendre (1752-1833), F. W. Bessel (1784-1846), Augustin Louis Cauchy (1789-1857), Jean-Victor Poncolet (1788-1857), Poinsot (1771-1859), Brianchan (1785-1864), Dupin (1784-1873), Chasley (1793-1880), Charles Hermite (1822-1901); İtalyan matematikçilerden Carnot (1753-1823); Norveç matematikçilerinden Niels Henrik Abel (1802-1829), Alman matematikçilerden, Jacobi (1804-1851), Carl Friedrich Gauss (1777-1855), Bernhard Riemann (1826-1866), Leopold Kronecker (1823-1891), Ernst Kummer (1810-1893), Weierstrass (1815-1897); Sovyet matematikçilerinden Nicolas Ivanawitch Lobatchewsky (1793-1856), Sonia Kowallewska (1850-1891); İngiliz matematikçilerden George Boole (1815-1864), Cayley (1821-1895), James Joseph Sylvester (1814-1897) ve İrlandalı matematikçi William Rowan Hamilton (1805-1865) adlarını belirtebiliriz.

Bu kişilerden; Gasport Monge, tasarı geometrinin; Carnot, konum geometrisinin; Newton, sonsuz küçükler geometrisini; pascal, Huygens ve Fermat da, olasılık hesabını ve gök mekaniğini geliştirdiler.

20. yüzyıl başları için; Alman matematikçilerinden Dedekind (1831-1916), Georg Cantor (1845-1918), Fransız matematikçilerinden Henri Poincaré'nin (1854-1912), ülkemizde de, Henri Poincaré'nin öğrencisi Salih Zeki'nin (1864-1921) adlarını belirtebiliriz.

Daha sonra gelen; Alman, İngiliz, Fransız, Amerika Birleşik Devletleri ve Sovyet Sosyalist Cumhuriyelteri Birliği, Japonya ve Hindistan ile Çin'de yetişen matematikçiler, matematiğe kazandırdıkları yeni bilgiler ile, matematiği insan zekasının en yüksek eseri haline getirmeyi başardılar.

Yapılacak kısa açıklamalardan sonra, şu gerçek ortaya çıkacaktır. Bugünkü ileri matematik ve bunun uygulama alanı olan astronomi (gökbilim) ve fiziğin temel bilgileri, uygulamaları ile birlikte, başlangıçta, Eski Mısır ve Mezopotamya'da vardı. Daha sonraları bu bilgiler, Eski Yunan, Eski Hint ve 8. ile 16. yüzyıl Türk-İslam Dünyasında ileri seviyeye gelmiştir. Bilahare 17. yüzyıl sonrası, Batı Dünyasında yapılan çalışmalar sonucunda, bugünkü Saadet Devrine ulaşabilmiştir. Bu gelişimde, 17. yüzyıl öncesi medeniyetlerin şeref payları inkar edilemeyecek kadar açıktır.

Kaynak: Süleyman Demirel Üniversitesi - Fen-Edebiyat Fakültesi

Ynm - 2 yıl önce
Dbbh

Indexable Inserts - 2 ay önce
We Positive Angle CNC tungsten carbide cutting tools inserts are china carbide inserts carbide drilling Inserts made Tungsten Carbide Inserts of superior carbide grades for longer life Cemented Carbide Inserts and a smoother finish. Install them into a peeling inserts matching milling Insert holder. When a cutting edge becomes dull, rotate threading Inserts the insert in the holder bta drilling tool to use a sharp edge. Larger nose angles and larger tip tungsten inserts price radii provide a stronger cutting edge but result in increased vibration and a rougher finish.

Görüş/mesaj gerekli.
Markdown kullanılabilir.

Matematik
3 yıl önce

Matematik (Yunanca μάθημα máthēma, "bilgi, çalışma, öğrenme"), numaralar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar...

Fermat, Analitik geometri, Analiz, Aritmetiğin Temel Teoremi, Cantor'un Diagonal Yöntemi, Cebirin Temel Teoremi, Dört Renk Teoremi, Eşyapı, Felsefe, Fermat'nın Son Teoremi, Fizik
Yunan matematiği
3 yıl önce

Yunan matematiği, Doğu Akdeniz kıyılarında MÖ 7. yüzyıldan MS 4. yüzyıla kadar uzanan dönemde yazılan matematik metinleri ile Klasik ve Helenistik dönemlerde...

Matematiğin temelleri
3 yıl önce

Matematiğin temelleri olarak bilinen matematik dalı matematiğin tümü için geçerli olan en temel kavramları ve mantıksal yapıları inceler. Sayı, küme,...

Matematiğin temelleri, Matematiğin temelleri
Soyut matematik
3 yıl önce

anlamda, soyut matematik, matematiğin soyut kavramlarını inceleyen bir kolu olarak adlandırılabilir. 18. yüzyıldan bu yana, soyut matematik matematiksel...

Nesin Matematik Köyü
7 yıl önce

Nesin Matematik Köyü, matematik alanında faaliyet gösteren bir eğitim ve araştırma kurumudur. İzmir Selçuk'taki Şirince köyüne 1 km uzaklıkta bulunan...

Matematik toplulukları listesi
3 yıl önce

toplulukların bir listesini içerir. Afrika Matematik Birliği (African Mathematical Union) Afrikalı Kadınlar Matematik Birliği [African Women in Mathematics...

Türk Matematik Derneği
7 yıl önce

Türk Matematik Derneği, Türkiye'de matematikçi Cahit Arf önclüğünde 1948 yılında kurulmuş, kamu yararına çalışan bir dernektir. Amacı, matematikle ilgili...

Türk Matematik Derneği, Matematik, Matematik Dünyası, Taslak